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Background

The unidimensional item response theory (IRT) models have the advantage of being
mathematically fairly simple. Yet, it is likely that the actual interactions between examinees and
test items are not as simple as is implied by the unidimensional IRT models. The
multidimensional nature of tests has been a concern to measurement professionals since early
eighties (e.g., Ansley & Forsyth, 1985). Examinees are likely to rely on more than a single
ability answering a particular test question, and sometimes the test questions require a
combination of a number of skills or abilities to determine a correct solution. Multidimensional
IRT (MIRT) applications are not commonly used in modeling and scoring test data, primarily
because MIRT applications require a great deal of item response data to adequately estimate item
and person parameters. However, using unidimensional IRT models sacrifices information about
the trait levels of examinees (Miller & Hirsh, 1992).

There are two general approaches in the literature that have proposed making better use
of information provided by all test items, which is not used in conventional IRT applications, to
increase subscore reliabilities: test level and item level information augmentation.

The test score level approach uses an empirical Bayes procedure in combination with IRT
to adjust unstable subscores. Yen (1987) developed “objective performance index” (OPI) that
can be used to provide reliable subscores with diagnostic value. An examinee’s overall test
performance is used as a priori to adjust subscale scores. Wainer, Sheehan, and Wang (2000)
presented a similar procedure that differed from the Yen’s procedpre by assuming a normal

distribution instead of a binominal distribution for the total test score and allowing subscores to



be used instead of the total test score in stabilizing subscale scores. The subscale score,
however, is not independent from the total test score with the Bayesian procedures.

The item level approach is based on fitting IRT models to response data with reference to
a composite trait at a time, which is defined by the items composi‘ng a subscale. Luecht and
Miller (1992) demonstrated that it was possible to retain multidimensional interpretations of
composite traits, even though test calibrations are conveniently unidimensional. The common
problem of assuming unidimensionality for an entire test is avoided by restricting that
assumption to items shown to directionally cluster together in multidimensional space.
Ackerman Aand Davey (1991) illustrated how collateral information, information that items
provide for a correlated trait, to imp'rove ability estimates in Computer Adaptive Testing (CAT).
Davey and Hirsh (1991) designed a simulation study to compare concurrent and consecutive
parameter estimation procedures. The conventional parameter estimates were referred as to
concurrent parameter estimates, and the proposed parameter estimates referred as to consecutive
parameter estimates. Consecutive parameter estimation involved calibrating items with respect
to both a primary trait and a non-primary trait. Associated estimation bias and standard error
estimates were reported as well as the performance of consecutive parameter estimates in
identifying unusual examinees.

Both approaches are reported to increase subscore reliabilities with the expense of some
bias: extreme scores were pooled toward the average ability score. The bias component in the
out-of-scale information is independent from the ability domain measured by a subscale, unlike

the OPI procedure where the total test score is dependent on the ability domain measured by the



subscale. The authors, however, agreed on that the bias involved in the estimates is
compensated with the increase observed in the reliabilities of subscores that might not be
reported otherwise.

This study purposed to extent on current literature and investigated specific conditions
under which out-of-scale information improves measurement precision, and to determine the
factors that influence both the degree of reliability gains and the amount of bias induced in the
reported scores when out of scale information is used. Proposed methodology in this study
provides means for analyzing the expected contribution of out-of-scale information that can be
used to increase the number of scores for diagnostic purposes without increasing the number of
items or testing. This study used the composite traits approach that allows obtaining item
parameter estimates for an item on a non-primary but related trait composite by projecting that
item as a vector onto the non-primary trait composite. It was expected that the higher the
correlation between two score composites the greater would be the benefit from using out-of-
scale information.

The expected increase in bias is a potential drawback using out-of-scale information to
increase precision of test scores. The bias, the difference between estimated and true ability
estimates, is expected to increase some degree due to included secondary information source
(Davey & Hirsh, 1991). The ultimate aim is to delineate conditions under which the
hypothesized increase in the information provided for examinees compensates for the expected

bias introduced to the scoring procedure.



Geometrical Representation of In- and Out-of-Scale Parameters

In most cases, items are classified to measure a single trait or trait composite even though
they measure more than one content domain or trait at a time. providing some bonus
information. If this bonus information is with reference to a trait that we want to report scores, it
can be incorporated into the scoring procedure, and may result reliable scores that may not be
reported otherwise. For example, science items may have a strong math component. We can use
the available information in the response data by letting these items contribute to the science
score as well as the math score. Furthermore, items that discriminate among examinees in a
narrow content domain can be used to stabilize subscores for other narrow content domains
within a single test. For example, Algebra items in a math test can be‘ used to increase the
reliability of the Geometry subscale score as long as those math items discriminate among

examinees in the measured Geometry domain.

Science Composite

/

/ Science Item 2

Science item 1

Math Composite

Figure 1 Projections item vectors onto composites being measured

The solid arrows in Figure 1 represents two science items as vectors in a two-dimensional space
formed by the science and math. The direction of the item vector indicates the direction in space

5




the item best measures, while the length of the vector indicates how discriminating the item is
in that direction of the space. Interpreted geometrically, an item discriminates with respect to a
composite préportionally to the length of its projection on that composite. The dashed lines in the
figure show how the discriminations of the two science items diminish when they are projected
onto the math composite.

Methods

As mentioned earlier, two types of information that an item can provide are
distinguished: In-scale and out-of-scale. In-scale information is defined as information that an
item provides for a composite trait to which it is specifically classified by a content review. Out-
of-scale information is defined as information that an item provides for a composite trait other
than the composite to which it is specifically classified. Computer simulated two-dimensional
data was used to investigate the effects of various factors on the precision of reported scores
computed with and without out-of-scale information. A variety of testing conditions were
specified to compare the performance of the traditional information computation method, (in-
scale information alone) and the proposed alternative information computation method (in- and
out-of-scale information together). Factors investigated were (a) test length, (b) the magnitude of
item discrimination, and (c) the degree of association between pairs of traits.

Evaluation criteria were information provided and indices of estimation errors: standard
error (SE), bias, and root mean squared error (RMSE). These criteria were chosen to evaluate the
precision of reported ability estimates or scores that may lead one to choose the in- and out-of-
scale information computation method over the in-scale information computation method in

practical assessment situations. Factors and evaluation criteria used are described below in detail.



Information Computation Methods

Two information computation methods are defined: Method A and Method B. Method A
uses information provided by only in-scale items, while Method B uses information provided by
both in- and out-of-scale items in computing evaluation criteria indices for examinees at their
true ability levels. It is hypothesized that the information provided for examinees would increase
when Method B is used. It is also hypothesized that information increase would become greater
with Method B when there is a stronger association between the in- and out-of-scale traits.

Modeling Multidimensional Response Data

A test battery was simulated to model two-dimensional (2-D) response data for
examinees from a multivariate normal distribution. The battery consisted of two tests each
measuring a single trait (or a trait composite). The proposed procedure is expected to be more
beneficial when data at hand include examinee responses to more than two tests, allowing
simultaneous inferences to.be made. However, the challenge faced is in the complexity of
controlling response data when the number of dimensions is more than two. Response data for a
two-test battery was modeled in this study. The response data included examinees’ responses to
two content domain scales. The two-test battery composite measures are given generic names for
convenience and to as math and science.

Factors to be investigated

Two factors to be kept constant in this study were examinee sample size as 1000 and

multidimensional structure of the response data as two-dimensional across all conditions.



Test Length

Two test battery lengths are included: a 30-item battery composed of two 15-item
subtests and a 60-item battery composed of two 30-item subtests. Test length was varied to
evaluate the relationship between the hypothesized increase in the information provided and the
number of items included in the battery.

Item Discrimination Power

Item discrimination parameters were varied in generating the response data for the in-
scale three-parameter logistic (3PL) item parameters of the fitted IRT model resulting in a high-
discrimination ideal test battery and a moderate-discriminating test battery. It was expected that
the precision increase would be greater for the high-discrimination condition, since information
provided by an item is primarily a function of its discrimination parameter.

The overall means of the difficulty, discrimination, and pseudo-guessing parameter
values were selected to be 0.00, 1.00, and 0.15, respectively for the moderate-discrimination
condition. The item discrimination parameters of the moderate-discrimination battery were
drawn from a normal distribution with a mean of 1.00 and standard deviation (SD) of 0.10. Only
the overall mean of the item discrimination parameter value was changed for the high-
discrimination condition and set as 1.80. The item discrimination parameters of the high-
discrimination battery were drawn from a normal distribution with a mean of 1.80 and standard
deviation (SD) of 0.10. The value 1.80 was selected to be the mean of item discrimination

parameter in the high-discriminating test battery.



Table 1.Summary Statistics for the Item Parameters of the 30-Item (Short) Test-Battery

Battery/Parameter Number of Items Mean SD Min. Max

Moderate-discriminating test battery

Math

a’ 15 0.9759 0.0936 0.7807 1.1086

b° 15 0.0004  1.5974  -2.5008  2.5000

¢’ 15 0.1500 0.0000 0.1500 0.1500

Science

a 15 0.9667 0.1058 0.7804 1.1010

b 15 0.0004 1.5974 -2.5008 2.5000

c 15 0.1500 0.0000 0.1500 0.1500

High-discriminating test battery

Math

a 15 1.7856 0.0974 1.5852 1.9491

b 15 0.0004 1.5974 -2.5008 2.5000

c 15 0.1500 0.0000 0.1500 0.1500

Science

a 15 1.7652 0.0923 1.5785 1.9598
b 15 0.0004 1.5974 -2.5008 2.5000

c 15 0.1500 0.0000 0.1500 0.1500

Table 2. Summary Statistics for the Item Parameters of the 60-Item (Long) Test-Battery

Battery/Parameter Number of Items Mean SD Min. Max
Moderate-discriminating test battery

Math

a’ 30 1.0281 0.1322 0.8447 1.2659
b° 30 -0.0012 1.5186 -2.5025 2.5000
¢’ 30 0.1500 0.0000 0.1500 0.1500
Science

a 30 0.9958 0.1069 0.8662 1.1806
b 30 -0.0012 1.5186 -2.5025 2.5000
c 30 0.1500 0.0000 0.1500 0.1500
High-discriminating test battery

Math

a 30 1.7919 0.0967 1.6295 1.9987
b 30 -0.0012 1.5186 -2.5025 2.5000
c 30 0.1500 0.0000 0.1500 0.1500
Science

a 30 1.7969 0.1208 1.5973 2.0243
b 30 -0.0012 1.5186 -2.5025 2.5000
c 30 0.1500 0.0000 0.1500 0.1500

Note. The pseudo-guessing parameter values were fixed at 0.15
*Item discrimination parameter value

®Item difficulty parameter value

“Item pseudo-guessing parameter value




The item difficulty parameters for both conditions were equally spaced values from the
interval between —2.5 and 2.5. Summary statistics of the item parameters generated in the short
test length and the long test length condition are summarized in Table 1 and Table 2 for both
moderate- and high-discrimination test ‘batteries‘

Trait Composite Correlations

It was hypothesized that the increment of information in Method B, the in- and out-of-
scale information computation method would increase as the correlation between the two traits
involved increase. This hypothesis was evaluated by varying the correlations between two trait
composites in generating response data forming five conditions: 0.10, 0.30, 0.50, 0.70, and 0.90.

Simulation

The RESGEN computer program (Muraki, 1992) was used to generate 2-D test battery
response data for 1000 examinees sampled from a multivariate normal distribution. Response
data were generated for a total of twenty conditions (2 test length X 2 item discrimination X §
correlation conditions). The multidimensionality in response data was modeled as a complex
two-dimensional structure where each item had two discriminating parameters, one item
discrimination parameter for each trait measured.

True ability parameters and true item parameters were fixed across replications, and a
randomly selected seed number was used for each replication.

Item Calibration

In-scale and out-of-scale item parameters were estimated using the BILOG (Mislevy &
Bock, 1990) and the PIC (Davey & Spray, 1999) computer programs fitting the 3PL IRT model

to each test. The probability of a correct response in the 3PL model is given by
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P.6)=c,+ - )i+ Pailo-0)] 0

where ; is the item administered, a, is the discrimination, b; is the difficulty, and ¢; is the pseudo-
guessing parameter of item ; D is the scaling constant 1.702 and P; () is the 3PL model
probability of a correct answer for the ith item for an examinee with ability 6 (Hambleton &
Swaminathan, 1985).

PIC uses the method of maximum likelihc;od to calibrate out-of-scale items one at a time
for a composite trait. The in-scale item parameters are held constant in every PIC run to fix the
scale, and out-of-scale items are calibrated individually, as the presence of other out-of-scale
items would contaminate the scale. For example, out-of-scale parameters of math items were
calibrated one at a time with respect to the Science composite, which was defined by all the
items in the science test, holding estimated science in-scale item parameters constant. Each item
in the two-test battery had two sets of parameters: one in-scale and one out-of-scale.

Evaluation Criteria

Indices of estimation errors (RMSE, SE and bias) were calculated for each examinee at
his/her true ability using both methods. The average Information provided for each simulee was
computed over 20 replications under each condition. Descriptive statistics were provided for 24

ability intervals on true ability or theta scale with the increments of 0.2.
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Information

Two information functions were computed for each item: one for Method A and one for

Method B by

(P,‘)
PO,

1@)= (2)
where P, is the 3PL model probability of a correct answer for the ith item for jth examinee with

ability 6, P; is the second derivative of P;. Equation 2 is estimated by

* 2

I(ei):DzaizPiQ,- BL ’ €)
P;
where,
. P.(6)-c.
(0)="—""T""". (4)
P =

For example, each math item had two information functions in the two-test battery, one with

respect to the math composite, in-scale, and one with respect to the science composite, out-of-

scale.

Total information provided for jth examinee with ability § was computed by

19,)- Z jfé ,

&)
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where ; is the item administered, P; is the threg-parameter logistic (3PL) model probability of a
correct answer for the ith item for jth examinee with ability 6 P’; is the second derivative of P,
and /(6;) is information provided for the jth examinee at its true ability by summing the
information provided by i=(1,...,n) items (Hambleton & Swaminathan,1985).

In method A, the total information were computed for each examinee’s true math and
science ability levels by summing the information provided by in-scale items in the test battery.
In method B, the total information were computed for each examinee’s true math and science
ébility levels by summing the information provided by all (in- and out-of-scale items) the items
in the test battery. There were 15 items in the short test-battery and 30 items in the long test-
battery to be summed over for Method A. While, there were 30 items in the short test-battery and
60 items in the long test-battery to be summed over for Method B.

Analysis

Ability estimates and information provided for examinees, and indices of ability
estimation errors were compared for Method A and Method B along the ability scale. The
stability of the study results across conditions were assessed across conditions for replications,
which are 20 in this study. The root mean square error (RMSE) were computed across conditions
for the ability estimates obtained with (Method B) and without (Method A) out-of-scale

information. Bias, SE, and RMSE were computed for each examinee using these formulas:

Bias@j)=%g[éj—ﬁj) ©)
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where, @ is the true ability, estimated§ is the ébility estimate for the jth replication, and N is the
number of replications, which is 20 in this study. The RMSE? is an index of parameter recovery
composed of two parts, one reflecting the variance (SE?) of the estimates and the other reflecting
the bias (BIAS?) in estimation (Gifford & Swaminathan, 1990; Wang & Vispoel, 1999). When
the estimated SE is small it suggests that random error in ability estimates are small. When the
estimated bias is small it suggests that systematic error in ability estimates are small. Larger
RMSE values for any condition indicate that the procedure used is working poorly in terms of
recovering the true parameters over replications.
Results

Table 3 lists the conditions used. The mean conditional plots were provided for the math

subtest only, which were very similar to those of the science test as expected since only the

randomly selected item parameters were not identical for both tests.

14

15



Estimating Ability

BILOG is used to obtain ability estimates for simulees for both methods. As mentioned in
earlier, unidimensional in-scale and out-of-scale item parameters were estimated by the
maximum likelihood estimator using the BILOG (Mislevy & Bock, 1990) and the PIC (Davey &
Spray, 1999) computer programs fitting the 3PL IRT model to each test.

In method A, BILOG was used to calibrate items (in-scale) and to obtain ability
estimates. In Method B, BILOG was provided a parameter file that included both BILOG
calibrated in-scale item parameters and PIC calibrated out-of-scale items to obtain ability
estimates. Even though any of the available estimation procedures could be used with BILOG,
the expected a priori, (EAP) procedure was used to obtain ability estimates for conditions
studied.

Although the maximum likelihood, (ML), estimator is an unbiased estimate of the sample
standard deviation, unlike the EAP estimator, a well-known problem arises with the use of the
ML estimator when there are extreme response patterns, (i.e., all correct or incorrect responses),
that produce extreme ability estimates. For short tests, tests with less than 20 items, the
probability of observing such problematic response patterns increases. The results are very large
ability estimate ranges, that is if a reasonable convergence level i.s reached for such response
patterns. The BILOG manual recommends the use of EAP procedure to obtain ability estimates
to refrain from such problematic cases when tests are composed of less than 20 items. This
recommendation is followed in this study since 10 of the total tests studied in 20 conditions had
two 15-item tests. The BILOG Manual states that in most applications the bias effect in EAP is

not apparent if the prior distributions are selected to be the same and ability distributions are put
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on a common scale. Ability estimates in the current study were obtained using EAP Bayesian
procedure using a normal prior distribution with a mean of zero and variance of 1. All ability

estimates were rescaled using BILOG with a mean of zero and variance of 1 for all conditions.

Table 3. Study Conditions and Factors

Math and Test length Average Item Math and
Science Test Method A Method B Discrimination | Science Trait
Battery for Both Tests Correlation

Conditions | Math | Science | Math | Science

Condition 1 15 15 30 30 Moderate 0.1
Condition 2 15 15 30 30 Moderate 0.3
Condition 3 15 15 30 30 Moderate 0.5
Condition 4 15 15 30 30 Moderate 0.7
Condition S 15 15 30 30 Moderate 0.9
Condition 6 15 15 30 30 High 0.1
Condition 7 15 15 30 30 High 0.3
Condition 8 15 15 30 30 High 0.5
Condition 9 15 15 30 30 High 0.7
Condition 10 15 15 30 30 High 0.9
Condition 11 30 30 60 60 Moderate 0.1
Condition 12 30 30 60 60 Moderate 0.3
Condition 13 30 30 60 60 Moderate 0.5
Condition 14 30 30 60 60 Moderate 0.7
Condition 15 30 30 60 60 Moderate 0.9
Condition 16 30 30 60 60 High 0.1
Condition 17 30 30 60 60 High 0.3
Condition 18 30 30 60 60 High 0.5
Condition 19 30 30 60 60 High 0.7
Condition 20 30 30 60 60 High 0.9

Note: Test data were two dimensional for the 20 conditions.
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Information Provided

Table 4 shows the average information and the average estimated reliability for each test
using Method A and Method B under each condition.

The reliabilities of both subtest scores invariably increased when Method B (in- and out-
of-scale information procedure) was used. The reliability gain became greater as the correlation
between the math and science composites increased from 0.5 to 0.7 for both moderate and high
discrimination. Even though the increase was greater for moderately high to high correlation
conditions, the scales that most benefited from the gain were the short test-moderate
discrimination conditions and the long test-moderate discrimination conditions.

The reliability estimates of the short test conditions increased from approximately 0.65 to
0.72 when Method B was used for moderate discrimination (conditions 1-5), and from
approximately 0.89 to 0.90 for high discrimination conditions. The increase was capitalized
when the correlation between the math and science composites was 0.5 or greater (conditions 6-
10).

The reliability estimates of th¢ long test conditions increased from 0.85s to 0.89s for
moderate discrimination conditions, and from 0.95s to 0.97s for high discrimination conditions
when the correlation between the math and science composites was 0.5 or greater (conditions 13-
15 and 18-20). However, the gain observed seems to be of practical use for short test-high
dfscrimination and long test-moderate discrimination conditions allowing an argument to be

made whether the associated subscale scores are reliable enough to report.
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Table 4. Average Information and Reliabilities over 20 Replications

MATH TEST SCIENCE TEST

Condition TRADITIONAL ALTERNATIVE TRADITIONAL ALTERNATIVE
METHOD METHOD METHOD METHOD

Statistic | INFO SE REL | INFO SE REL | INFO SE REL | INFO SE REL

1 Mean | 2.780 | 0.360 | 0.640 | 2.898 | 0.346 | 0.654 | 2.697 | 0.371 | 0.629 | 2.822 | 0.355 | 0.645
Var { 0.014 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.014 | 0.000 | 0.000

2 Mean | 2.8498 | 0.352 | 0.648 | 3.077 | 0.326 | 0.674 | 2.667 | 0.376 | 0.624 | 2.908 | 0.345 [ 0.655
Var | 0.020 | 0.000 | 0.000 | 0.024 | 0.000 | 0.000 | 0.017 | 0.000 | 0.000 | 0.020 | 0.000 | 0.000

3 Mean | 2.818 | 0.355 | 0.645 | 3.495 | 0.287 | 0.713 | 2.683 | 0.374 | 0.627 [ 3.370 | 0.297 | 0.703
Var | 0.013 | 0.000 | 0.000 | 0.021 | 0.000 | 0.000 | 0.015 { 0.000 [ 0.000 | 0.022 | 0.000 | 0.000

4 Mean | 2.818 [ 0.355 | 0.645 | 3.495 | 0.287 | 0.713 | 2.683 | 0.374 | 0.627 | 3.370 | 0.297 | 0.703
Var | 0.013 | 0.000 | 0.000 | 0.021 | 0.000 | 0.000 | 0.015 [ 0.000 | 0.000 | 0.022 | 0.000 | 0.000

5 Mean | 2.847 | 0.352 [ 0.648 | 3.904 | 0.257 | 0.743 | 2.751 | 0.364 | 0.636 | 3.822 | 0.262 | 0.738
Var | 0.022 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000

6 Mean | 9.876 | 0.101 { 0.899 | 9.984 [ 0.100 | 0.900 | 9.219 | 0.109 | 0.891 | 9.334 | 0.107 | 0.893
Var | 0.103 | 0.000 | 0.000 | 0.104 | 0.000 | 0.000 | 0.109 [ 0.000 [ 0.000 | 0.108 | 0.000 | 0.000

7 Mean | 9.482 [ 0.106 | 0.894 | 9876 | 0.101 | 0.899 | 9.423 | 0.106 | 0.894 | 9.832 | 0.102 | 0.898
Var | 0.173 | 0.000 | 0.000 | 0.181 | 0.000 | 0.000 | 0.167 [ 0.000 | 0.000 | 0.175 | 0.000 | 0.000

8 Mean | 9.560 | 0.105 | 0.895 | 10.600 | 0.094 | 0.906 | 9.232 | 0.108 | 0.892 [ 10.219 | 0.098 | 0.902
Var | 0.091 | 0.000 | 0.000 | 0.116 | 0.000 | 0.000 | 0.040 | 0.000 | 0.000 | 0.053 [ 0.000 | 0.000

9 Mean | 9.630 | 0.104 | 0.896 | 11.966 | 0.084 | 0.916 | 9.640 | 0.104 | 0.896 | 12.023 | 0.083 | 0.917
Var | 0.110 | 0.000 | 0.000 | 0.129 | 0.000 | 0.000 | 0.050 [ 0.000 | 0.000 | 0.056 | 0.000 [ 0.000

10 Mean | 9.311 | 0.108 { 0.892 | 13.873 | 0.072 | 0.928 | 9.304 [ 0.108 | 0.892 | 13.894 { 0.072 | 0.928
Var | 0.115 | 0.000 | 0.000 | 0.167 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000 | 0.110 | 0.000 | 0.000

11 Mean | 6.841 | 0.146 | 0.854 | 7.097 | 0.141 | 0.859 | 8.079 | 0.124 | 0.876 | 8.300 | 0.121 | 0.879
Var | 0.044 | 0.000 | 0.000 | 0.046 | 0.000 | 0.000 | 0.054 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000

12 Mean | 6.902 | 0.145 | 0.855 | 7.507 | 0.133 | 0.867 | 8.155 | 0.123 | 0.877 | 8.745 | 0.114 | 0.886
Var | 0.035 | 0.000 | 0.000 | 0.036 | 0.000 | 0.000 | 0.041 | 0.000 | 0.000 | 0.047 | 0.000 | 0.000

13 Mean | 6.841 | 0.146 | 0.854 | 8.082 [ 0.124 | 0.876 | 8.261 | 0.121 { 0.879 [ 9.604 | 0.104 | 0.896
Var | 0.043 {0.000 | 0.000 | 0.051 | 0.000 § 0.000 | 0.047 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000

14 Mean | 6.830 [ 0.147 | 0.853 [ 9.072 | 0.110 | 0.890 | 8278 | 0.121 | 0.879 | 10.792 | 0.093 | 0.907
' Var | 0.033 | 0.000 | 0.000 | 0.042 | 0.000 { 0.000 | 0.031 | 0.000 | 0.000 [ 0.048 [ 0.000 | 0.000

15 Mean | 6.861 | 0.146 | 0.854 | 10.760 | 0.093 | 0.907 | 8.464 | 0.118 | 0.882 | 12.962 | 0.077 | 0.923
Var | 0.058 | 0.000 | 0.000 | 0.119 | 0.000 | 0.000 | 0.030 | 0.000 | 0.000 | 0.081 | 0.000 | 0.000

16 Mean | 18.902 | 0.053 | 0.947 [ 19.129 | 0.052 | 0.948 | 18.828 | 0.053 | 0.947 | 19.060 | 0.052 | 0.948
Var | 0231 | 0.000 | 0.000 [ 0.237 | 0.000 | 0.000 | 0.143 | 0.000 | 0.000 | 0.141 | 0.000 | 0.000

17 Mean | 19.380 | 0.052 | 0.948 | 20.229 [ 0.049 | 0.951 | 19.647 | 0.051 | 0.949 | 20.473 | 0.049 | 0.951
Var | 0.111 | 0.000 | 0.000 | 0.117 | 0.000 | 0.000 | 0.151 | 0.000 | 0.000 | 0.160 | 0.000 | 0.000

18 Mean | 19.151 | 0.052 | 0.948 [ 21.257 [ 0.047 | 0.953 | 19.540 | 0.051 | 0.949 | 21.713 | 0.046 | 0.954
Var | 0.147 | 0.000 | 0.000 | 0.204 | 0.000 | 0.000 | 0.138 | 0.000 | 0.000 | 0.165 | 0.000 | 0.000

19 Mean | 19.386 | 0.052 | 0.948 | 24.347 [ 0.041 | 0.959 | 19.165 | 0.052 { 0.948 | 24.244 | 0.041 | 0.959
Var | 0.102 | 0.000 | 0.000 | 0.147 | 0.000 [ 0.000 | 0.104 | 0.000 | 0.000 | 0.127 | 0.000 |} 0.000

20 Mean | 19.654 | 0.051 | 0.949 | 30.564 | 0.033 | 0.967 | 19.797 | 0.051 | 0.949 | 30.794 | 0.032 | 0.968
Var | 0.151 | 0.000 { 0.000 | 0.304 | 0.000 | 0.000 | 0.138 [ 0.000 | 0.000 | 0.296 | 0.000 | 0.000

e Reliability = p=(0s’ - 0.°) / G, where . '= 1 / 1 1(6)g(8)d(B), and since it is assumed that
cez= l,p=1 -0,2
Method A and Method B information (INFO) for the Math test were plotted in Figure 4.
Numbers listed were rounded to three decimal places.
Figure 4 and Figure 5 plot the first colums of the tradirional method and alternative method for the math test.
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Figure 4 and 5 show the conditional mean information provided for the math subtest
using Method A and Method B for short test (1-10) and long test (11-20) conditions,
respectively. It was hypothesized that information provided for examinees would increase with
Method B, and stronger association between the in- and out-of-scale traits would contribute to
this increase. The results obtained confirmed this hypothesis.

The information increase with Method B was approximately 3%, 9%, 25%, 25%, and
39% for moderate discrimination-short test conditions, and increased in magnitude as the
correlation between math and science composites increased from 0.1 to 0;9. The information
increase with Method B was approximately 1%, 4%, 10%, 24%, and 49% for high
discrimination-short test conditions, also increased in magnitude as the correlation between math
and science composites increased from 0.1 to 0.9. However, the increase was smaller for lower
correlation conditions, conditions 1 through 3, than for high correlation conditions, conditions 4
and 5. A similar pattern was observed for long-test conditions, conditions 10-20, with the
exception that the information gain was greater in general. Information gain observed was 3%,
7%, 17%, 30%, and 55% for the moderate discrimination-long test conditions (conditions 11-15),
and 5%, 5%, 19%, 26%, and 55% for high-discrimination-long test conditions (conditions 16-
20).

Standard Error

Figure 6 and 7 show the conditional mean standard error (SE) plots for math ability at
short (1-10) and long test (11-20) conditions, respectively. These data reveal that Method B
constantly yields smaller standard error estimates overall across the theta scale. The difference is

most pronounced at moderate to high correlation conditions and for the long test conditions.
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The random error was observed to decrease as the test length increased regardless of the
information computation method used. The SEs showed that random measurement error was
greater with Method A than Method B for all conditions.

The SEs of the short-test moderate-discrimination conditions (conditions 1-6) were
smaller with Method B than with Method A across the theta scale. The SEs with Method B
became smaller as the correlation between math and science traits increased. The SEs of the
short-test high-discrimination conditions (conditions 6-10) were also smaller with Method B, and
became smaller as the correlation between math and science traits increased. However, Method
B SEs were relatively greater than Method B SEs at the upper and lower ends of the theta scale.

A similar pattern was observed under long test conditions (conditions 11-20) with an
increased discrepancy between Method A and Method B SEs. Results indicate that the decrease
observed in the SEs for the moderate discrimination test conditions is almost constant across the
theta scale for both short and long test conditions. With the high discrimination conditions,
results show that the increases in item discrimination are associated with decreases in SEs.
Furthermore, Method A SEs were relatively smaller than those of the Method B at the ends of
the theta scale, and the Method A SEs, and were greater than those of Method B at the mid theta

scale.
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Bias

Figure 8 and 9 show the conditional bias plots for the 10 short test (conditions 1-10) and
10 long test conditions (conditions 11-20) for the math test, respectively. These plots indicate
that the estimated bias did not show large discrepancies between the two Methods. The bias
estimates were relatively smaller (a) for the long test conditions than those of the short test
conditions, and (b) for the high discrimination conditions than those of the moderate
discrimination conditions. This difference became larger as the correlation level was increased.

The bias under the moderate-discrimination short-test condition was smaller with Method
B than it was with Method A when trait correlation was 0.7 and even smaller when trait
correlation was 0._9. This pattern was also emerged in the high discrimination-short test
conditions, however, lesser in degree. In the long test-moderate discrimination conditions, bias of
Method B was slightly greater for extreme ability levels, and was slightly smaller for middle
ability levels. In the long test-high discrimination conditions, bias of Method B was greater for
extreme ability levels, and was smaller for middle ability levels. The two methods yielded
similar estimated bias when the correlation between the two traits was 0.9. In the long-test high-
discrimination condition, the bias was smaller with Method B, and Method B performed better as
the trait correlation increased. The bias of the 0.1 correlation-long-test-high discrimination
condition, condition 16, was almost identical for both methods.

Overall, Method B bias became smaller when the correlation between math and science
traits was moderate to high, test items were highly discriminating, and test length was longer, in
this order. Method B bias was found to be slightly smaller than that of Method B when the trait

correlation increased as the ability level became extreme under all conditions.
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Somewhat contradictory to what was expected, ability estimates with Method B were
only slightly more biased than those with Method A in general. One possible explanation is that
the using the EAP procedure with both Method A and Method B, instead of the ML, procedure
led to biased estimates for both methods. |

Root Mean Square Error (RMSE)

As noted earlier, RMSE is a function of both SE and bias (RMSE’=SE+bias?).
Consequently, the results for RMSE are related to those already discussed for SE and bias.
Figure 10 and 11 show the cc;nditional RMSEs for math ability at short-test conditions
(conditions 1-10) and long-test conditions (conditions 11-20), respectively. Short-test condition
RMSEs were found to be higher than those of the long-test conditions in general. The RMSEs
increased as the ability level of the examinee became extreme at both short and long-test
conditions, and this increase was greater at the high-discrimination conditions. This could be due
to observed higher bias in the high-discrimination conditions for extreme abilities.

The results indicate that the RMSEs of the short test-moderate discrimination conditions
were smaller with Method B than those with Method A as the correlation level increased. The
RMSEs of the Method B were the smallest when compared to .those of Method A for condition 5,
where the math and the science trait correlation was 0.9. The RMSEs of the short test-high
discrimination conditions were slightly greater with Method B than with Method B for 0.3, 0.5,

and 0.7 correlation conditions.
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Figure 11. Estimated Root Mean Square Error (RMSE) of the Math Ability Estimates for
the Long Test Conditions
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In the short test-high discrimination conditions, the RMSEs were greater with Method
B, and for extreme ability levels in general. However, when compared, Method B RMSEs were
smaller than Method A RMSEs for extreme ability levels. The only short test-high discrimination
‘condition with overall smaller Method B RMSEs was condition 10, where the math and the
science trait correlation was 0.9.

The RMSEs of the long test conditions (conditions 11-20) were greater for Method B in
general. Under the long test conditions, RMSEs were greater for Method B for 0.1, 0.3, and 0.5
correlation conditions for both modérate and high discrimination conditions. The RMSEs were
approximately the same for Method A and Method B for long-moderate and high discrimination
conditions when the trait correlation was 0.7. The RMSEs were smaller with Method B for 0.9
correlation condition only for both moderate and high discrimination conditions. The only short
test-high discrimination condition that resulted with overall smaller RMSEs for Method B was
condition 10, where the math and the science trait correlation was 0.9.

The RMSEs of the long test conditions (conditions 11-20) were greater for Method B in
general. Under the long test conditions, RMSEs were greater for Method B for 0.1, 0.3, and 0.5
correlation conditions for both moderate and high discrimination conditions. The RMSEs were
smaller with Method B for 0.9 correlation condition only for both moderate and high
discrimination conditions.

Summary

The finding for SE indicate that the random measurement error is more evident with the
Method A, the in-scale information method, than with the Method B. This SEs difference were

more prevalent conditions across the theta scale for the short test conditions. The only conditions
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were high discrimination-moderate correlation conditions where SEs with Method B were
greater than those with Method A only for extreme ability levels.

The results for bias show that ability estimates at high and low theta levels are pulled
toward the mean (pulled inward) with both methods. This inward bias was expected since the
EAP Bayesian procedure was used in obtaining ability estimates. The results indicate that
Method A and Method B bias did not differ for the short test conditions with the only exception
of 0.9 correlation conditions. The biases were smaller for Method B for moderate and high
discrimination conditions with 0.9 trait correlation (conditions 5 and 10). Method B bias also did
not differ from the Method A bias for long test-moderate discrimination conditions (conditions
11-15). The bias associated with Method B ability estimates were smaller for the extreme ability
levels and greater for middle range ability levels for long test-high discrimination conditions,
more so when the correlation between the two traits increased.

The- RMSEs reflecting the combined effects of SEs and Bias were smaller with Method B
for moderate ‘discrimination conditions only when the math and science trait correlation was 0.7
and became smaller when the math and science trait correlation was 0.9 for both short and long

test conditions. However, the Method B RMSEs of the high discrimination conditions were

' greater with 0.1, 0.3, and 0.5. The discrepancy almost disappeared as the trait correlation was

increased to 0.7. At 0.9 correlation level, Method B RMSEs were smaller than those of Method

A. In sum, short test Method B RMSEs were very similar to those of Method A, and become

smaller than Method A RMSEs as the correlation level increased from 0.5t0 0.7, and 0.7 t0 0.9.
In the short test conditions, Method B RMSEs were smaller than those of Method A for

the moderate discrimination condition. In the long-test conditions, Method B RMSEs were
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greater than those of Method A for moderate discrimination conditions. The discrepancy
dissapeared as the correlation level increased to 0.7, and the RMSEs of Method B became
smaller as the correlation level increased to 0.9. The Method B RMSEs were approximately the
same with the Method A RMSEs in the long test-high discrimination conditions. However, with
increasing correlation level Method B RMSEs were smaller than Method A RMSEs. This was
most pronounced with 0.9 correlation level.

The performance of Method A and Method B RMSEs in the long test-high discrimination
conditions was different across thg theta scale. Method B RMSEs were smaller than Method A
RMSE:s for the mid ability range, and were smaller than Method A RMSEs for the extreme
ability range. The decrease in Method B RMSEs relative to the Method A RMSEs was also
observed at the extreme ability range. That is, as the correlation level increased to 0.9 Method B
not only performed better than Method A in the mid ability range but also at the extreme ability
range. The RMSEs computed for the long test conditions required higher trait correlation to
recover true ability parameters, than those for the short test conditions. That is, when short and
long test moderate discrimination conditions are compared, short RMSEs were smaller with

Method B.

Discussion

One of the most important tasks facing measurement specialists is an increasing demand
from stakeholders that large-scale assessments should provide more test-scores that can be used
for diagnostic purposes. However, it is rare to have enough items in a test battery to report
content specific scores within subtests with an acceptable level of reliability. Increasing the

number of items per sub-content domain is not an attractive solution for both test-developers and
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test-takers. An alternative is to investigate procedures that would make use of already available
information in the response data.

This study was conducted to evaluate the expected increase in the reliabilities of
subscale scores when all items composing a test battery are allowed to contribute the subscale
score to the extent that they retaiﬁ discrimination power with respect to the trait intended to be
measured by these subscales.

The choice between the in-scale, Method A, and in- and out-of-scale, Method B,
procedures would seem to depend primarily on SE and bias. The SEs were found to be
constantly smaller with the in- and out-of-scale information method than with the in-scale
information method, favoring the out of-scale information method. If the purpose is to rank order
examinees accord-ing the composite trait measured, bias will be lesser of concern than SE or
random error, since bias will not effect the rank order of examinees with respect to a trait as long
as the bias is monotonically related to the ability estimates. Wang and Vispoel (1998) listed three
situations where bias is more important than SE as in comparing group means, in referencing
ability estimates from different tests, and making mastery/non-mastery or other classification
decisions. In such cases Method B

It was shown that the in- and out-of-scale information procedure increased the reliability
of the subscale scores without increasing the number of test items when traits measured are
moderately or higly correlated. The out-of-scale information method performed better (smaller
SEs and RMSEs) with the short test-moderate discrimination conditions when compared to the
in-scale information method as the correlation between the traits measured increased. This

finding is likely to make the alternative information computation method more attractive to the
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users because tests in practice are likely to be comprised of moderately discriminating items

and the domain scales that need precision increases are usually short tests, i.e., tests with less
than 20 items. Using out-of-scale information is likely to produce reliable subscores that can be
used for diagnostic purposes, where examinees performance repertoire can be decried in terms of

what the examinee can and can not do.
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